\(\int \frac {a+b \tan (c+d \sqrt [3]{x})}{x} \, dx\) [50]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 18, antiderivative size = 18 \[ \int \frac {a+b \tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx=a \log (x)+b \text {Int}\left (\frac {\tan \left (c+d \sqrt [3]{x}\right )}{x},x\right ) \]

[Out]

a*ln(x)+b*Unintegrable(tan(c+d*x^(1/3))/x,x)

Rubi [N/A]

Not integrable

Time = 0.03 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {a+b \tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx=\int \frac {a+b \tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx \]

[In]

Int[(a + b*Tan[c + d*x^(1/3)])/x,x]

[Out]

a*Log[x] + b*Defer[Int][Tan[c + d*x^(1/3)]/x, x]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {a}{x}+\frac {b \tan \left (c+d \sqrt [3]{x}\right )}{x}\right ) \, dx \\ & = a \log (x)+b \int \frac {\tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 4.95 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.11 \[ \int \frac {a+b \tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx=\int \frac {a+b \tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx \]

[In]

Integrate[(a + b*Tan[c + d*x^(1/3)])/x,x]

[Out]

Integrate[(a + b*Tan[c + d*x^(1/3)])/x, x]

Maple [N/A] (verified)

Not integrable

Time = 0.39 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.89

\[\int \frac {a +b \tan \left (c +d \,x^{\frac {1}{3}}\right )}{x}d x\]

[In]

int((a+b*tan(c+d*x^(1/3)))/x,x)

[Out]

int((a+b*tan(c+d*x^(1/3)))/x,x)

Fricas [N/A]

Not integrable

Time = 0.23 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.00 \[ \int \frac {a+b \tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx=\int { \frac {b \tan \left (d x^{\frac {1}{3}} + c\right ) + a}{x} \,d x } \]

[In]

integrate((a+b*tan(c+d*x^(1/3)))/x,x, algorithm="fricas")

[Out]

integral((b*tan(d*x^(1/3) + c) + a)/x, x)

Sympy [N/A]

Not integrable

Time = 1.63 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.83 \[ \int \frac {a+b \tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx=\int \frac {a + b \tan {\left (c + d \sqrt [3]{x} \right )}}{x}\, dx \]

[In]

integrate((a+b*tan(c+d*x**(1/3)))/x,x)

[Out]

Integral((a + b*tan(c + d*x**(1/3)))/x, x)

Maxima [N/A]

Not integrable

Time = 0.53 (sec) , antiderivative size = 68, normalized size of antiderivative = 3.78 \[ \int \frac {a+b \tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx=\int { \frac {b \tan \left (d x^{\frac {1}{3}} + c\right ) + a}{x} \,d x } \]

[In]

integrate((a+b*tan(c+d*x^(1/3)))/x,x, algorithm="maxima")

[Out]

2*b*integrate(sin(2*d*x^(1/3) + 2*c)/((cos(2*d*x^(1/3) + 2*c)^2 + sin(2*d*x^(1/3) + 2*c)^2 + 2*cos(2*d*x^(1/3)
 + 2*c) + 1)*x), x) + a*log(x)

Giac [N/A]

Not integrable

Time = 0.46 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.00 \[ \int \frac {a+b \tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx=\int { \frac {b \tan \left (d x^{\frac {1}{3}} + c\right ) + a}{x} \,d x } \]

[In]

integrate((a+b*tan(c+d*x^(1/3)))/x,x, algorithm="giac")

[Out]

integrate((b*tan(d*x^(1/3) + c) + a)/x, x)

Mupad [N/A]

Not integrable

Time = 4.10 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.00 \[ \int \frac {a+b \tan \left (c+d \sqrt [3]{x}\right )}{x} \, dx=\int \frac {a+b\,\mathrm {tan}\left (c+d\,x^{1/3}\right )}{x} \,d x \]

[In]

int((a + b*tan(c + d*x^(1/3)))/x,x)

[Out]

int((a + b*tan(c + d*x^(1/3)))/x, x)